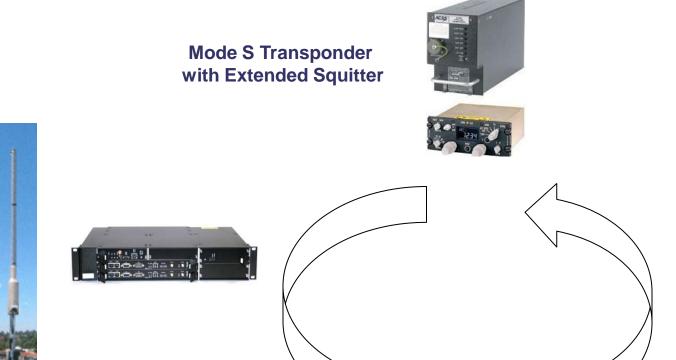


ASECNA ADS-B workshop

Dakar- 22-23th July 2014

Thales ADS-B Solutions


an update

Full range of ADS-B solutions

TIS-B & FIS-B

ADS-B Ground station

Vehicle tracking

TopSky ATM automation system with embedded TopSky Tracking

AX680 series

- Robust 19" equipment
- Hot-swap elements, maintenance free
- Redundant monitored fans, dual power supply
- Dual Ethernet Asterix interface, SNMP controlled
- Integrated GPS and Site Monitor
- Applications
 - ADS-B
 - ACAS and Spectrum Monitoring
 - Surveillance Broadcast Services
 - Airport Multilateration
 - Wide Area Multilateration

The controlled

HW inside: Integrated Receiver/Signal Processing Board Digital, software-defined radio Sensitivity -91 dBm Mode A/C/S, 1090 ES ADS-B Decoding

THALES

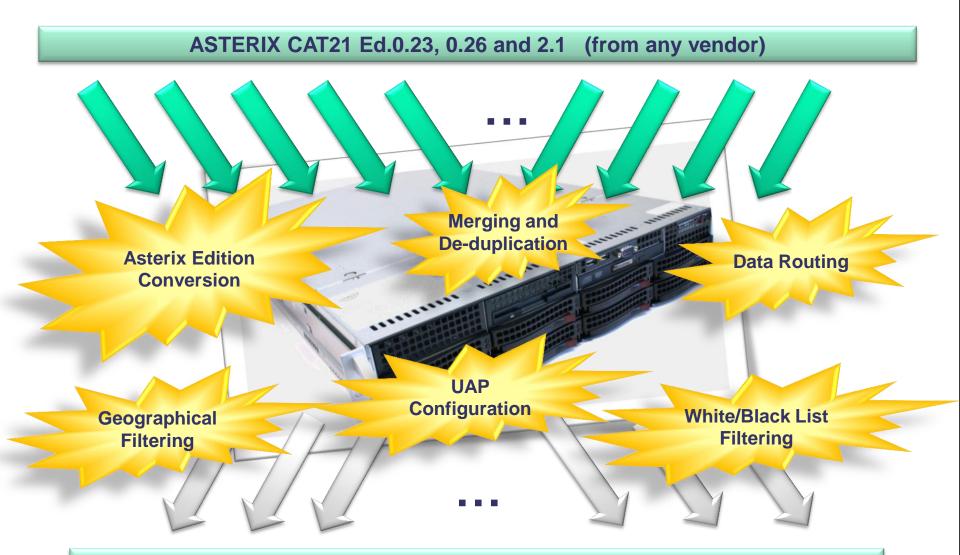
Based on AX680 ADS-B Ground Stations

- Without central compontent "ADS-B Standalone"
 - Airservices Australia Upper Airspace Program
 - DGAC Indonesia Nationwide ADS-B Deployment Program
 - FAA Surveillance Broadcast Services Program

With central component (ADS-B server) – "ADS-B Centralised"

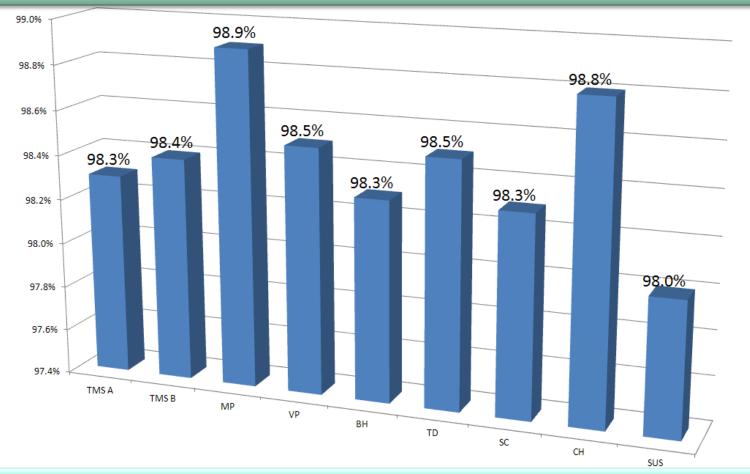
- Hong Kong Civil Aviation Department ADS-B Program
- DFS Germany PAM FRA, WAM and ADS-B Program
- DTI France Lyon and Nice Airports, Multilateration and ADS-B Program

Compliant to international standards, including


- ED129 (ADS-B) and ED129A (published 2014) and ED129B (planned 2015)
- ED102A/DO260B (ADS-B MOPS)
- ED126, ED161, ED163 ADS-B SPR for NRA, RAD, APT
- ED109A / DO278B AL4 (Software Design Process)

5 / 18

ADS-B centralised: ADS-B Server



ASTERIX CAT21 Ed. 0.23, 0.26 and 2.1 (to any client system)

THALES

6 / 18

Probability of detection of individual sites....

... combined by ADS-B Server to PD 99.5%

7 / 18

Standards exist, are being refined

- Signal in space: RTCA DO260B / Eurcoae ED 102A
- Ground Station Specifications: ED129A to be released 2014
- Extended to full System Specification ED 129B ongoing, planned for 2015

Interfaces are clearly defined

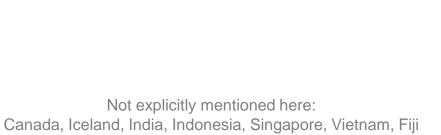
- Asterix Cat 21 edition 0.23 (de facto standard)
- Asterix Cat 21 edition 2.1 (latest stable version)

Ground and airborne equipment is available

- Type approved
- Operational performance, in service

Operational introduction – however – is globally slow

So what is missing?

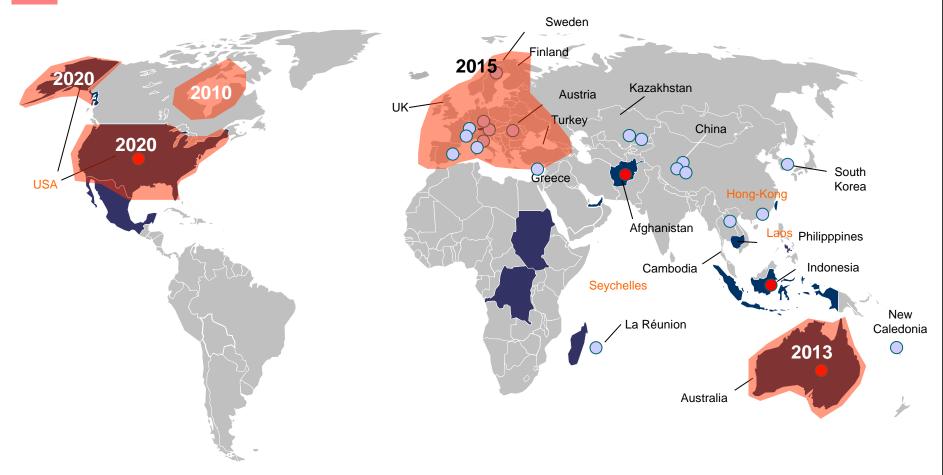


Europe:

- Surveillance Performance & Interoperability Implementing Rules (SPI IR 1207/2011)
 - ADS-B mandate for aircraft MTOW > 5.7t or TAS > 250kts
 - Baseline ED102A / DO260B
 - Forward Fit/Retrofit: 2015/2017
 - Proposed Amendment:
 - Extend ADS- mandate to all aircraft mandated to carry a transponder

Other Countries

- China: HK SAR Dec 2013
 - Mandate for HKFIR (>FL290)
- Australia Dec 2013
 - Mandate for Upper Airspace (> FL290)
 - Baseline DO260A
- USA 2020
 - ADS-B Mandate for class A,B,C airspace (+class E > 10kft)
 - Baseline DO260B



10 / 18

ADS-B Out capable aircraft and Thales based ADS-B infrastructure

Aircraft equipage mandates

1. ADS-B Aircraft Equipage levels

2. ADS-B Integrity and Security

3. ADS-B increased bandwidth

Barrier can be removed by:

- providing unique benefits to equipped aircraft and Separating ADS-B from non-ADS-B traffic, or
- issuing mandates, as in e.g. AUS, EU, US

Plus many others, not mentioned here: e.g. Canada, India, Indonesia, Hong Kong, Singapore, Vietnam, Fiji...

Barrier is removed by:

- adding integrity and security layers to ground system
 - ADS-B Integrity: SESAR WP15.4.5
 - ADS-B Security: SESAR WP15.4.6
 - CyberSecurity: Thales Initiative

THALES

2 - ADS-B Integrity and Security (2/2)

Implementing means

- on ground station level (decentralized), and
- in a centralized ADS-B Validation Server
- from simple data consistency checks to additional measurements,
- fraud detection, and,
- jamming detection

Respond

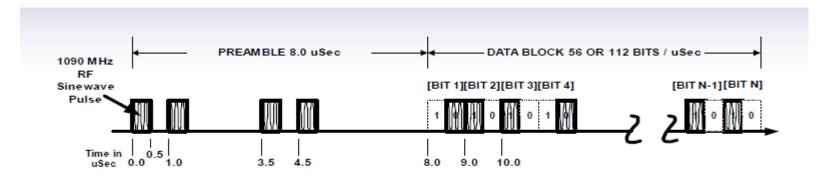
- SW / HW Updates
- Operational Updates
- Incident Response
- Event/ Threat Sharing

Prevent

- Threat Assessment
- Design Requirements
- Software, Hardware Standards
- Intelligence/ Interdiction

Detect

- Event Assessment
- Event Analysis
- Event Intelligence
- Defined new Asterix cat 21 to include validation results (edition 2.1)
- Implementation validated by Eurocontrol


Further Roadmap

Integrity Overlay based on 1090 MHz Phase Overlay (long term)

Overlay Concept

- ATC Overlay uses Phase Data within the PPM signals
- 8PSK Max Transmit/Receive Range Matches PPM Max Range Capability (Currently being worked by ICAO ASP TSG)

The first 8 pulses are used as reference. The phases of data bits are compared against the reference phases. More phases create more data bits.

- Provides More Data Bits With Each Standard ATC PPM Message (up to 3 times : from 695 b/s up to 2 Kb/s for ES)
- Backward Compatible : Phase Modulation Not "Seen" By Existing TCAS / Radar Equipment

THALES

Overlay Concept

- Provides More Data Bits With Each Standard ATC PPM Message (up to 3 times : from 695 b/s up to 2 Kb/s for ES)
- Backward Compatible : Phase Modulation Not "Seen" By Existing TCAS / Radar Equipment

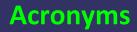
Overlay Datalink Potential Uses

- More ADS-B Data Bits For New Applications Such as: Met. Data, ATC ground control, Trajectory Change Points, Wake Vortex information/alerts
- DO-260 Appendix Of Possible Future ADS-B Uses Still Growing
- Use For Directed Overlay Messages To A Particular AircraftFor Parallel Approach/Path Crosslink Data or M&S Crosslink Data
- Increase (or replacement) Of Mode S DAPS Type Messages
- Mode S Reply Increased Data Rate DF22
- Bit Error Correction of Standard PPM Data Bits Improves Standard ADS-B Or Mode S Reply Interference Immunity

Overlay Datalink Potential Uses

- More ADS-B Data Bits For New Applications Such as: Met. Data, ATC ground control, Trajectory Change Points, Wake Vortex information/alerts
- DO-260 Appendix Of Possible Future ADS-B Uses Still Growing
- Use For Directed Overlay Messages To A Particular AircraftFor Parallel Approach/Path Crosslink Data or M&S Crosslink Data
- Increase (or replacement) Of Mode S DAPS Type Messages
- Mode S Reply Increased Data Rate DF22
- Bit Error Correction of Standard PPM Data Bits Improves Standard ADS-B Or Mode S Reply Interference Immunity

- Easy to implement
- Extremely reliable and robust solution maintenance free
- Extremely low lifecycle cost
- Type approved and certified by German Regulator
- High performance system
 - Long range
 - High processing capacity
- Safe and secure implentation
 - on ADS-B level
 - on network level Thales CyberSecurity


- Centralized or standalone architecture tailored to customer needs
- Growth potential towards full WAM, Airport MLAT, and SBS System

THANK YOU

Non Radar ADS-B
Radar Area ADS-B
Approach with Vertical Guidance
Airport Traffic Situational Awareness
Digital Subscriber Line - Ethernet protocol (ADSL
European Organisation for Civil Aviation
Flight Information Service
Optical Fiber
Global Navigation Satellite System
Horizontal Figure Of Merit
Horizontal Performance Level
Implementing Rule
Enhanced Mode S
Elementary Mode S
Minimum Operational Performance Standard
Multi Sensor Tracking System
Navigation Accuracy Category for position
Navigation Integrity Category
Navigation Uncertainty Criteria
Required Navigation Performances
Radio Technical Commission for Aeronautics
Selective Availability On
Satellite Base Augmentation System
Surveillance Integrity Level
Surveillance Performance and Interoperability
Traffic Information System
Universal Access Transponder (?)

